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Abstract— In this study, we introduce an innovative risk-
aware behavior planning framework designed for autonomous
driving, with the aim of fostering socially compliant vehicle
behavior in diverse mixed-traffic highway scenarios. Our objec-
tive is to empower autonomous vehicles to exhibit behavior that
aligns with societal norms, thus enhancing their acceptability
among human drivers. We expand the scope of Control Barrier
Function-inspired risk assessment to encompass a heteroge-
neous spectrum of road participants, allowing us to explicitly
model varying degrees of social influences between different
classes of vehicles. We also present a mathematical condition for
accountability tracing, enabling the identification of responsible
entities in situations where risks surge. Drawing inspiration
from Isaac Asimov’s ”Three Laws of Robotics,” we establish
social compliance conditions grounded in our unique risk
concept, which seamlessly integrates with a wide range of
existing safety-critical controllers, regardless of their type or
design. By incorporating these conditions, which encode societal
expectations, into existing safe controllers, we demonstrate that
autonomous vehicles can exhibit context-aware behavior with-
out compromising the safety guarantees provided by existing
controllers. This approach effectively excludes behaviors that
may be safe but do not align with human intuition while
guaranteeing the least interference with the existing controller.

I. INTRODUCTION

There have been remarkable advancements in autonomous
driving technology, leading to the deployment of self-driving
cars on real-world streets. These autonomous vehicles now
share the road with human drivers, marking a significant
milestone in the progression of this technology. It is increas-
ingly clear that the coexistence of autonomous vehicles and
human drivers is not merely a concept but a practical reality,
and it is anticipated that large-scale mixed-traffic scenarios
will become increasingly common in the near future.

To foster a harmonious coexistence between self-driving
cars and human-driven vehicles, prioritizing safety is
paramount. Various techniques and tools [1], [2], [3], [4]
have been explored to enhance the vehicle’s ability to avoid
possible collisions. However, safety considerations should
not be confined solely to physical state configurations, such
as avoiding collisions with human drivers. They should also
extend to encompass the psychological aspect of human per-
ception and trust [5], [6], [7], [8]. Ensuring that interactions
with self-driving cars instill a sense of safety and confidence

∗This work was supported in part by the Qualcomm Innovation Fellow-
ship, in part by the Faculty Research Grant award at UNC Charlotte, and in
part by the U.S. National Science Foundation under Grant CNS-2312465.

1 The authors are with Carnegie Mellon University, Pittsburgh, USA.
Email: yiweilyu,jdolan@andrew.cmu.edu

2The author is with the Department of Computer Science, Univer-
sity of North Carolina at Charlotte, Charlotte NC 28223, USA. Email:
wenhao.luo@uncc.edu.

Fig. 1. An example scenario of highway driving with mixed classes of
traffic participants driving from left to right. The box with diagonal strips
represents the ego vehicle under our control. Other surrounding vehicles
are marked in different colors based on their types, pink for motorcycles,
yellow for passenger cars, and green for trucks. The dash arrows represent
the risk each surrounding vehicle poses on the ego vehicle in the pairwise
relationship.

is crucial. Therefore, it is equally imperative to explore
innovative approaches that empower autonomous vehicles
to exhibit socially compliant behavior. By doing so, these
vehicles can align their actions with human expectations,
enhancing their overall acceptability among human drivers.

Numerous studies have explored the concept of human-
like vehicle control [9], [10], [11], often relying on cost
functions that are either manually crafted or learned from
data, along with metrics like Root Mean Square Error and
Average Displacement Error. These approaches have proven
effective in replicating human trajectories from datasets, bol-
stering repeatability. However, the challenge of adaptability
persists, as real-world scenarios can vary widely making it
challenging to be adequately captured and represented in
training data. Consequently, there is a pressing need for a
unified framework capable of generating vehicle behavior
that is acceptable to humans across a wide range of sce-
narios. There have been efforts to integrate traffic rules into
control frameworks to enable scenario-aware behavior for
self-driving cars [12], [13]. Many of these approaches rely
on rule-based methods, where different rules are integrated
into the autonomous driving control problem. However, a
challenge arises in that distinct rules must be specified
for various driving scenarios. Furthermore, it’s important to
highlight that these objective rules may not entirely capture
the subjective nuances that differentiate, for example, the
behavior of an autonomous vehicle suddenly merging in
front of a heavily loaded truck on the highway, ensuring no
collisions occur and all rules respected, from behavior that
aligns with typical human expectations.

In this work, we introduce a novel behavior planning
framework that relies on risk assessment as its foundational
concept. Risk evaluation has been a well-explored topic in
the realm of robot control, with some approaches incorporat-
ing it into the objective function to minimize the risks faced



by agents in their environments [14], [15]. However, these
approaches often lead to unintended overly conservative
behavior, hindering expected task performance. Moreover,
existing risk evaluation methods tend to assess the influence
of limited factors, such as the positions and motion of robots.
In our previous work [16], [17], we proposed an innovative
model-based risk evaluation tool capable of considering
additional dimensions, including a robot’s safety radius and
behavioral aggressiveness. Nevertheless, this risk evaluation
tool was primarily designed for homogeneous mobile robots
operating in open spaces, rather than the complex scenarios
encountered in autonomous driving, where various types
of vehicles coexist. We argue that risk assessment should
inherently incorporate the heterogeneity of different traffic
participants. For instance, the risk posed by a fully loaded
truck should not be equated with that of a small passenger
vehicle, even if they share the same physical states. Ac-
knowledging and addressing these distinctions is paramount
for improving risk evaluation, particularly when tailoring it
specifically for autonomous driving systems.

Our main contributions are: 1) We extend the CBF-based
risk evaluation to encompass heterogeneous traffic partici-
pants, allowing for explicitly modeling the varying degrees of
social influence exerted by different vehicle types, a critical
consideration in real-world driving scenarios. Based on this
extended risk assessment, we formulate the accountability
tracing problem in a mathematically quantifiable manner,
providing a valuable tool for future policy studies concerning
incidents involving self-driving cars. 2) Drawing inspiration
from Isaac Asimov’s ”Three Laws of Robotics,” we derive
conditions related to the notion of risk that characterize
robot behavior aligning with human instinct and common ex-
pectations. These conditions offer broad applicability across
various driving scenarios and even in different domains be-
yond autonomous driving. 3) By integrating these conditions,
which encode social norms, into existing vehicle control
problems, we enable autonomous vehicles to exhibit behavior
that aligns with typical human expectations while preserving
safety. This approach effectively excludes behaviors that may
be technically safe but do not align with human intuition
while guaranteeing the least interference with the nominal
controller.

II. PRELIMINARIES

A. Control Barrier Function

Control Barrier Functions (CBF) [18] are used to define an
admissible control space for safety assurance of dynamical
systems. One of CBF’s important properties is its forward-
invariance guarantee of a desired safety set. Consider a
nonlinear system in control affine form: ẋ = f(x) + g(x)u,
where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm are the system
state and control input with f and g assumed to be locally
Lipschitz continuous. A desired safety set H can be denoted
by a safety function h(x): H = {x ∈ Rn : h(x) ≥ 0}. Thus
the control barrier function for the system to remain in the
safety set can be defined as follows [18]:

Definition 1: (Control Barrier Function) Given the afore-
mentioned dynamical system and the set H with a continu-
ously differentiable function h : Rn → R, then h is a control
barrier function (CBF) if there exists a class K function for
all x ∈ X such that supu∈U {ḣ(x, u)} ≥ −κ

(
h(x)

)
.

We selected the same class K function κ(h(x)) = γh(x) as
in [19], [20], where γ ∈ R≥0 is a CBF design parameter
controlling system behaviors near the boundary of h(x) =
0. Hence, the admissible control space can be redefined as
B(x) = {u ∈ U : ḣ(x, u)+γh(x) ≥ 0 }. It is proved in [18]
that any controller u ∈ B(x) will render the safe state set H
forward-invariant, i.e., if the system starts inside the set H
with x(t = 0) ∈ H, then it implies x(t) ∈ H for all t > 0
under controller u ∈ B(x).

B. CBF-inspired Risk Evaluation for Pairwise Vehicles

Consider a driving scenario with a total number of vehicles
N ∈ N , in which every vehicle has access to observations
of all vehicles’ current positions and velocities, but no direct
communication is available among vehicles. Similar to [3],
[21], [22], we consider the particular choice of pairwise
safety function hij(x) and safety set Hij(x) = {x ∈ X :
hij(x) = ||xi − xj ||2 −D2

safe ≥ 0,∀i ̸= j}, and admissible
control space Bij(x) = {u ∈ U : ḣij(x, u) ≥ −γ(hij(x))}
for each vehicle pair, where xi, xj ∈ R2 for i, j ∈ {1, ..., N}
are the positions of any pairwise vehicles i and j. We
consider single-integrator dynamics ẋ = u as in [22] for
simplicity, but higher-order dynamics like unicycle dynamics
can be achieved using a nonlinear inverse method for velocity
mapping [23], [24], [17]. u = {ui, uj} ∈ R2 is the joint
control input of this particular vehicle pair, and Dsafe is the
pre-defined safety margin.

Next, to quantify the risk between each pair of vehicles
from potential collision, we draw inspirations from CBF and
propose the following pairwise safety loss function Lij(x, u):

Lij(x, u) = −ḣij(x, u)− γhij(x)− c

= −2(xi − xj)
T (ui − uj)− γ(||xi − xj ||2 −D2

safe)− c
(1)

where c as a constant offset is a large positive value to
ensure Lij(x, u) is always negative to prevent unintended
cancelling-out when being accumulated later. ui, uj ∈ R2

are the agent’s current velocities. γ is the CBF design factor
representing how aggressive the pairwise vehicles are [18].
The safety loss function Lij(x, u)

1 represents how close the
system is to the boundary of the safe set, or how easily a
safety violation could occur, under the assumption that both
vehicles will move with piecewise-constant velocity.

1Note that this risk evaluation tool does not necessarily require the
vehicles to use Control Barrier Function-based controllers. We understand
that in the real world vehicles may use different kinds of controllers, yet
this does not prevent them from understanding the risk generated from inter-
robot interaction via this tool, with the mild but reasonable assumption that
information about safety margin and vehicle states is known or observable.
Even for vehicles not using CBF-based controllers, it is still possible to
learn the parameter γ from observations using machine learning techniques
like linear ridge regression [21].



III. METHOD

A. Risk Assessment for Heterogeneous Traffic

To provide the vehicle with a sense of situational aware-
ness of the dynamic environment it is in, we are interested
in assessing the accumulated risk a vehicle receives from the
environment. Now with Lij(x, u) as a handy tool describing
the risk vehicle i faces when interacting with vehicle j, for
a scenario involving multiple vehicles, we define the aggre-
gated risk Ri ∈ R vehicle i faces posed by all surrounding
vehicles. Since we aim to tailor the previously proposed
CBF-inspired risk evaluation for mixed-traffic scenarios in
autonomous driving as shown in Fig. 1, to explicitly model
this difference in social influence from heterogeneous vehicle
types, we propose the following social influence weight
w =

[
w1 w2 ... wN

]
∈ RN for all vehicles in the scene

with wi = M(mi), where mi ∈ R is the mass of each
vehicle, and M is a mapping function that maps the vehicle
mass to a weight with

∑N
i=1 wi = 1. The larger the vehicle

mass is, the smaller wi will be. According to the Vehicle
Classification Definition of Federal Highway Administration
by the U.S. Department of Transportation [25], all vehicles
are classified into 13 categories based on the number of
axies. For simplicity, we provide the following table of
a few common vehicle types for reference, with the data
of the approximated weight provided by the Pennsylvania
Department of Transportation [26].

TABLE I
VEHICLE WEIGHT APPROXIMATION BY PENNDOT.

Approximated Weight of Traffic Participants (in tons)
Class I Motorcycle 0.2

Class II Sedan 1.5
SUV 2

Class III or
above

Empty Truck 10
Bus 20
Heavy Loaded Truck 40

As shown in Table I, Class I refers to motorcycles and
Class II consists of small passenger vehicles like Sedan and
SUV. For Class III or above, they are mostly commercial
vehicles like trucks, buses, and tractors. As an example, if
vehicle i is an SUV, and vehicle j is a heavily loaded truck,
then wi : wj = 20 : 1. Next, the accumulated risk Ri

the vehicle i receives from the interactive environment with
multiple surrounding vehicles is defined as:

Ri =

N∑
j=1

wjLij(x, u), ∀j ̸= i (2)

As the equation suggests, Ri provides a quantitative
measure of the amount of risk the vehicle i receives from
all surrounding vehicles considering their different vehicle
types. Recall that since Lij(x, u) is negative, then the
greater mass the vehicle j has, the smaller weight wj is,
therefore the larger value Ri has. The greater Ri is, the
more likely a safety violation is to occur. The proposed risk
evaluation framework is simple yet effective: 1) Ri grows
with the increased number of vehicles in the system, as

the environment becomes more complex and challenging;
2) Ri varies depending on the changes of states, including
positions and motion of other vehicles as we expected, as
it is important to tell how much risk agent i is exposed to
even when a collision has not happened yet; 3) With the
special mass-related weight design of w, this accumulated
risk assessment is augmented by various degrees of social
influence of different vehicle types. The underlying idea here
is that considering a fully loaded truck and a small passenger
vehicle, even if they have the same relative positions and
motions compared to the ego vehicle, it is obvious that the
heavy truck is considered a higher potential threat. This
can be explained by the truck’s higher momentum owing to
its greater weight, making it considerably more challenging
to brake or accelerate compared to the smaller passenger
vehicle. This concludes our introduction to the notion of
risk that provides the ego vehicle with a means to assess the
situation, and we will elaborate on how this understanding
can be applied to shape the core design of the socially
compliant behavior planning framework.

Given that our objective is to create a socially compliant
behavior-planning framework that only minimally alters the
existing controller to filter out behaviors incongruent with
societal expectations, we must address two pivotal questions:
1) Intervention Condition Definition: When should our
proposed framework intervene and modify the actions of
the existing controller? 2) Social Norm Characterization:
How should we define socially compliant behavior that aligns
with human expectations? Conversely, how can we identify
behaviors that deviate from typical human expectations and
are therefore undesirable? These two questions address the
”when” and ”how” aspects of intervention for the ego robot,
forming the cornerstone of our approach toward achieving
socially acceptable autonomous vehicle behavior.

B. Reasoning of Accountability

To answer the first question, we argue that intervention is
only needed when the existing controller may lead the ego
vehicle into a highly risky situation even though a collision
has not happened yet. We start by introducing the binary
logical operator l:

l = I(∆Re ≥ Rthreshold) (3)

where we use subscript e to denote the ego vehicle. ∆Re

is the difference in the accumulated risk (Eq. 2) the ego
vehicle receives from the surrounding environment between
two consecutive time steps, and Rthreshold is the user-defined
threshold value, that defines situations that should engage
the ego vehicle’s special attention. With l returning true
or false, Eq. 3 indicates if there is a significant increase
in the accumulated risk the ego vehicle receives from the
environment so that it should take a closer look. Such a
substantial increase could result from various factors, e.g.,
a potential sudden acceleration by the following vehicle or
unexpected lane changes by vehicles in adjacent lanes.

Once a risky occasion is detected, the ego vehicle should
reason about who should be responsible for the surge in



risk during the interaction. To trace accountability, the ego
vehicle identifies the one pairwise counterpart j∗ that causes
the primary surge by examining the change of all pairwise
risk assessments between two consecutive time steps:

j∗ = argmax
k

∆Lek(x, u) ∀k ∈ {1, ..., N} \ e (4)

Then by computing the accountability ϕ for itself and the
neighboring vehicle j∗, we trace back to see whose motion
ẋ is making a higher contribution to the identified risk surge.

ϕe =
∂Lej∗

∂xe
ẋe = (−2(ue − uj∗)− 2γ(xe − xj∗))

Tue (5)

Finally, we determine the vehicle that should be accountable
for the risk surge as:

k = argmax
k∈{e,j∗}

ϕk = argmax
k∈{e,j∗}

∂Lej∗

∂xk
ẋk (6)

In this work, we assume that the existing controller ũe in
Eq. 7 of the ego vehicle already satisfies the collision-free
safety requirement2, and our goal is to design an interpretable
behavior layer to filter out those behaviors that are non-
socially compliant. It is important to reason over in what
kind of situations the proposed behavior layer should come
into play and supersede the existing controllers.

ũe = argmin
ue∈U

||ue − ūe||2

s.t. ||xe − xj ||2 ≥ D2
safe ∀j ∈ {1, ..., N} \ e

(7)

where ūe is the task-related nominal control command pro-
vided by a high-level planner, e.g., a motion planner. Consid-
ering that ũe already represents the best response for the ego
vehicle to accomplish the designated task while maintaining
safety, no intervention will be applied to maximize task
performance without unnecessary restrictions. This allows
the ego vehicle to execute necessary actions freely. One
such example is when the ego vehicle is in the left lane
of a highway approaching an exit, and it decides to change
lanes in front of a neighboring vehicle already in the right
lane. In such a scenario, the ego vehicle is accountable for
the significant increase in risk due to this maneuver, but no
intervention is required because lane changing is a necessary
action. Conversely, if a risk surge is primarily caused by
changes in the external environment, such as the behavior
of neighboring vehicles, intervention becomes necessary to
ensure that the ego vehicle’s reactive behavior remains both
safe and reasonable.

Therefore, the proposed behavior planning framework is
designed only to intervene when k = j∗ in Eq. 6, suggesting
that it is the pairwise counterpart j∗ that causes the risk surge
instead of the ego itself. Then the second logical operator is
defined as:

δ = I(ϕe < ϕj∗) (8)

In summary, the essential and sufficient condition for the
intervention to happen is: l ∧ δ = 1, namely risk surge is
identified and the ego vehicle is not accountable for it.

2This is a reasonable assumption considering all the great tools available,
including but not limited to Control Barrier Functions [27] and Reachability
Analysis [28].

C. Risk-Informed Social Norm Characterization
Now to answer the second question, we draw inspiration

from Asimov’s ”Three Laws of Robotics” [29] which express
human expectations governing the behavior of robots. We
now use them to guide our design of social norms char-
acterization during the intervention of our framework. For
easier representation, we denote the joint control state for
each vehicle pair e (ego) and j (neighboring vehicle) without
intervention as ũ, consisting of ũe and uj , and the joint
control state after intervention as u∗, consisting u∗

e and uj .
Asimov’s First Law states, “A robot may not injure a

human being or, through inaction, allow a human being to
come to harm.” Since in this work we assume the existing
controller ũ can already guarantee no collision happens, with
our notion of risk, we interpret the first law as the expectation
of robots’ ability to reason over potential risk even when
no immediate collision is going to happen: the accumulated
risk the ego vehicle poses to surrounding vehicles should
decrease after intervention u∗, compared to that with the ũ
that the existing controller supplies.∑

j∈N\e

weLej(x, u
∗) <

∑
j∈N\e

weLej(x, ũ) (9)

An example involves the ego vehicle being a heavily
loaded truck occupying the left lane, with a smaller passenger
vehicle following closely. Suddenly, the following vehicle
accelerates, significantly reducing the gap between them. In
the absence of intervention, the original controller ũ instructs
the ego truck to accelerate in response to maintain safety.
However, our intervention u∗ directs the ego vehicle to
execute a lane change to the right, allowing the following
vehicle to pass first. This action is not within the scope of
the original controller, which does not consider the increased
risk to the human passenger vehicle when closely trailing a
heavily loaded truck traveling at a high speed which could
put the following vehicle in danger.

The Second Law states, ”A robot must obey orders given
to it by human beings, except where such orders would
conflict with the first law.” With the intervention mechanism
and the controller designed by a human, the autonomous
vehicle adheres to this principle. In light of the recent debate
on this second law regarding the responsiveness of robots,
Murphy and Woods [30] proposed an alternative second
law ”A robot must respond to humans as appropriate for
their roles”, to emphasize that the capability for robots to
respond appropriately is more important in human-robot
interaction compared to the capability of the autonomy. In
the context of shared autonomy in mixed traffic scenarios, the
intervention of robot behavior should not be limited solely
to situations leading to immediate injury, such as collisions
with human-driven cars—precisely the motivation behind
this work, which aims to eliminate vehicle behaviors that
do not align with social norms when necessary.

The Third Law states, “A robot must protect its own
existence as long as such protection does not conflict with
the first or second law.” Leveraging our notion of risk, we
interpret this law as requiring that the accumulated risk the



ego vehicle receives from the surrounding vehicles should
decrease after intervention u∗, compared to that with ũ.

Re(u
∗) < Re(ũ) ↔

∑
j∈N\e

wjLej(x, u
∗) <

∑
j∈N\e

wjLej(x, ũ)

(10)
This interpretation forces the ego vehicle to act as a self-
preserving entity, prioritizing its own safety. For instance,
human drivers do not expect the ego vehicle to execute an
abrupt and aggressive lane change in the midst of a closely-
following fleet of vehicles, solely to create space for a human
driver behind it to pass ahead.

D. Socially-Compliant Control Problem Formulation

Finally, we introduce our proposed Socially-Compliant
control problem formulation, which integrates the behavior
planning approach with social norm intervention into the
original controller design (Eq. 7).

u∗
e = argmin

ue∈U
||ue − ūe||2

+(l ∧ δ)(µ1

∑
j∈N\e

weLej(x, u) + µ2Re(x, u))

s.t. ||xe − xj ||2 ≥ D2
safe ∀j ∈ {1, ..., N} \ e

l = I(∆Re ≥ Rthreshold)

δ = I(ϕe < ϕj∗)
(11)

where µ1 > µ2 ≫ 0 are two large positive coefficients for
the accumulated risk the ego vehicle poses to surrounding
vehicles and the accumulated risk it receives from them,
prioritizing the first law ”no harm to humans”. This optimiza-
tion problem can be solved using a Mixed Integer Quadratic
Programming Solver directly or any regular optimization
solver by reformulating the problem using the Big-M method
[31] for improved computational efficiency.

IV. SIMULATION & DISCUSSION

We provide three illustrative examples to show the validity
and effectiveness of our proposed approach. The existing
controller is set to be the same as Eq. 7, namely maintaining a
nominated travel speed whenever possible without collisions.

Example 1: We first showcase the performance of our
proposed approach in comparison to the existing controller
in a two-vehicle scenario, as depicted in Figure 2. We have
a scenario plot on the left showing the ego truck on the fast
lane with a small passenger vehicle following it. The dashed
line represents the decision space of the ego truck in our
proposed approach on whether to change its lane and how
fast it would like to travel. Distinct ego behavior is observed
in three different setups (left, middle, right) on the right.

Next, we demonstrate how heterogeneous road participants
can affect the decision of our proposed method in two multi-
vehicle scenarios. In both cases, we have one fully loaded
truck and two passenger vehicles sharing the same initial
states and conditions, with the only difference as the switched
vehicle type of the two non-ego vehicles. Example 2: In
Fig. 3, the small passenger vehicle behind is programmed

Fig. 2. The scenario illustration and simulation plots for Example 1.
The green vehicle is the ego truck and the yellow vehicle is a small
passenger vehicle. The three subplots (left, middle, right) on the right
introduce different scenario setups with waypoints plotted out for easier
understanding. Left: The small passenger car maintains a steady speed and
doesn’t create any pressure or risk for the ego truck. Since no risk surge
is detected, our behavior planning framework doesn’t need to intervene.
Consequently, the ego truck continues to follow its existing controller, and
we have u∗

i = ũi. Middle: The ego truck is solely relying on its existing
controller ũi without our behavior planning framework. At a certain point,
the small passenger vehicle begins to accelerate, rapidly closing the gap
between the two vehicles. Without considering the potential risks to both
itself and the human passenger vehicle, ũi is left with no alternative but to
instruct the ego truck to also accelerate in order to maintain a safe inter-
vehicle distance. Right: Here the small passenger vehicle takes the same
action as in the middle subplot by accelerating. However, the difference
is that the ego truck is equipped with our proposed algorithm. As the gap
between the two vehicles rapidly shrinks, the increased risk to the ego truck
triggers the accountability trace, leading the ego truck to hold the small
passenger vehicle accountable. Subsequently, the intervention mechanism
is activated. In evaluating various choices available to the ego truck and
considering their alignment with typical human expectations, it decides to
temporarily deviate from its nominal controller. It does so by executing a
lane change to the right lane, allowing the small passenger vehicle to pass
first. This decision is a wiser one compared to the scenario in the middle
subplot, as the ego truck chooses not to jeopardize the safety of both itself
and the small passenger vehicle. At the same time, it strives to adhere to
the task-related nominal controller to the greatest extent possible.

Fig. 3. The ego vehicle is the yellow passenger vehicle with black strips in
the scenario illustration, corresponding to the red vehicle in the simulation
illustration for clearer visualization. There is one small passenger vehicle
following the ego vehicle, and a large truck in the adjacent lane.

to aggressively accelerate in a very short time frame. Once
again, our proposed framework activates the intervention
mechanism, prompting the ego passenger vehicle to consider
its available options. In contrast to the previous example, it
recognizes that executing a lane change is not the most fa-
vorable solution here. This is because changing lanes would
introduce a higher accumulated risk the ego vehicle poses to
surrounding vehicles, especially to the truck in the adjacent
lane, surpassing the accumulated risk it generates when
staying in the current lane and accelerating to maintain a
safe distance from the following passenger vehicle. Example
3: However, the situation takes a different turn when the
vehicle types of the two non-ego vehicles are swapped as
shown in Fig. 4. Now, with a fully loaded truck following the



Fig. 4. Example 3: There is one large truck following the ego vehicle and a
small passenger vehicle in the adjacent lane. This recommendation is based
on the fact that the cumulative risk the ego vehicle incurs, amplified by the
weight-related mass, greatly exceeds the risk associated with changing lanes
in front of the small passenger vehicle in the adjacent lane. This decision,
even if it involves a temporary deviation from its existing controller, is
deemed more prudent.

ego vehicle and exhibiting aggressive acceleration, despite all
three vehicles sharing identical state configurations, includ-
ing positions and motions, our proposed method advises the
ego passenger vehicle to execute a lane change.

Conclusion We extend our CBF-based accumulated risk
evaluation to realistic highway driving scenarios that con-
sider the heterogeneity in vehicle types to embed their
potentially different levels of social influence into the notion
of risk. We achieve this by incorporating accountability
tracing and social norm characterization into mathematical
expressions linked to the concept of risk. This framework
is designed to facilitate autonomous vehicles in exhibiting
behaviors that align with common human intuitions, all while
guaranteeing a minimum level of performance compared to
their existing controllers. Our approach draws inspiration
from Isaac Asimov’s ”Three Laws of Robotics,” offering
fundamental interpretations of our proposed notion of risk
that can be broadly applied to other robotics applications,
promoting socially compliant robot behavior generation.

REFERENCES

[1] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of
motion planning for highway autonomous driving,” Transactions on
Intelligent Transportation Systems, vol. 21, pp. 1826–1848, 2019.

[2] J. Chen, W. Zhan, and M. Tomizuka, “Autonomous driving motion
planning with constrained iterative lqr,” IEEE Transactions on Intelli-
gent Vehicles, vol. 4, no. 2, pp. 244–254, 2019.

[3] Y. Lyu, W. Luo, and J. M. Dolan, “Probabilistic safety-assured adaptive
merging control for autonomous vehicles,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
10 764–10 770.

[4] M. Althoff, D. Althoff, D. Wollherr, and M. Buss, “Safety verification
of autonomous vehicles for coordinated evasive maneuvers,” in 2010
IEEE Intelligent Vehicles Symposium. IEEE, 2010, pp. 1078–1083.

[5] J. K. Choi and Y. G. Ji, “Investigating the importance of trust on
adopting an autonomous vehicle,” International Journal of Human-
Computer Interaction, vol. 31, no. 10, pp. 692–702, 2015.

[6] A. Waytz, J. Heafner, and N. Epley, “The mind in the machine:
Anthropomorphism increases trust in an autonomous vehicle,” Journal
of experimental social psychology, vol. 52, pp. 113–117, 2014.

[7] L. Oliveira, K. Proctor, C. G. Burns, and S. Birrell, “Driving style:
How should an automated vehicle behave?” Information, vol. 10, no. 6,
p. 219, 2019.

[8] F. Riaz, S. Jabbar, M. Sajid, M. Ahmad, K. Naseer, and N. Ali,
“A collision avoidance scheme for autonomous vehicles inspired by
human social norms,” Computers & Electrical Engineering, vol. 69,
pp. 690–704, 2018.

[9] P. Hang, C. Lv, Y. Xing, C. Huang, and Z. Hu, “Human-like decision
making for autonomous driving: A noncooperative game theoretic
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 4, pp. 2076–2087, 2020.

[10] Z. Huang, H. Liu, J. Wu, and C. Lv, “Differentiable integrated motion
prediction and planning with learnable cost function for autonomous
driving,” Transactions on neural networks and learning systems, 2023.

[11] J. Grover, Y. Lyu, W. Luo, C. Liu, J. Dolan, and K. Sycara,
“Semantically-aware pedestrian intent prediction with barrier func-
tions and mixed-integer quadratic programming,” IFAC-PapersOnLine,
vol. 55, no. 41, pp. 167–174, 2022.

[12] J. Ding, L. Li, H. Peng, and Y. Zhang, “A rule-based cooperative
merging strategy for connected and automated vehicles,” Transactions
on Intelligent Transportation Systems, vol. 21, no. 8, pp. 3436–3446,
2019.

[13] A. Aksjonov and V. Kyrki, “Rule-based decision-making system for
autonomous vehicles at intersections with mixed traffic environment,”
in 2021 IEEE International Intelligent Transportation Systems Con-
ference (ITSC). IEEE, 2021, pp. 660–666.

[14] L. Zhou and P. Tokekar, “Risk-aware submodular optimization for
multirobot coordination,” IEEE Transactions on Robotics, 2022.
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